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I. INTRODUCTION

Although a large amount of interest has been shown in the theoretical

aspects of optimgl control over the last decade, there has only been a
minor attempt to apply this somewhat sophisticaﬁed theory. It is true
that, in general, laxrge scale‘computers would be required. But, if the
study is limited to linear systems certain simplifications result.
These simplifications lead to a simple design technique which has,
apparently, been overlooked or underestimated. The effectiveness of
the techniq;e for a linear system with accessible state variables has

already been discussed {1, 2] and this memorandum reports a preliminary

study of the casé where some of the state variables are inaccessible.
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II. THEORETICAL BACKGROUND

The requisite theory is readily available in the modern control

theory textbooks [3, 4] and only the necessary results are presented

here.

Consider a system described by the equations

b
[

BX + CU + d ’ (II-1)

where X is an mth order column vector, U is an sth order column vector,

and & is a disturbance vector. It is desired to minimize the performance

criterion E, whete

-~ .

Expected T :
= 1 ] -
E = Value of [ {K X +1 HP.} t , | (11-2)

and where the primes denote the tramspose and A and H are poéitive

definite weighting matrices.

The optimal forcing function has been shown to be,

) | | (II-3)

where

D = H‘lchZ , ' | (II-4)
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and where

iy -1
t = A = B! - ' R -
K2< ) K2 KZB + KZCH C K?. (II-5)

If all of the state variables X cannot be measured, then the optimal

control has been shown to be,

> (I1-6)
where X is the best estimate of X in a linear or least squares sense.
This estimate is given by

N

X=-QX+AY

X | (11-7)

where Y is a vector of the measured outputs contaminated by some noise
w and Q is givé-n by
Q=AM-B+CD. (II-8)

1

The matrix M is a measurement matrix, i.e.,
=M+ - a9

and A1 is given by
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A =W, (II-10)

where W is formed from the measurement noise wvector ®. Finally K is

given by the steady state solution of
. . . N -1 '
K = CVC' + BK + KB' - KM'W MK , (1I-11)

where CVC' is a matrix formed from the disturbances in the system, d.
It should be noticed that equations (II-5) and (II-11) are very
similar and the same computer program can be used to compute the K2 !

and K matrices.




III. APPLICATION OF CONTINUOUS FORM OF DYNAMIC PROGRAMMING

The state equations for the K-8 accelerometer, as shown in Figure 1,

are

X. =X

1 2

X2 =W/E Tl3>+ %/JB s

Xo=x

X, =(-BO)X, + T,/ I,
where

X1 = B (radians)

X2 = B (radians/sec)’

X3 = (r;dians)

X4 = ¢ (radian/sec)
and

H=293.0 gm-cm-=- sec

Ja= 2.66 gm - cm - sec2

J5= 0.123 gm - ecm - sec

2

(I1I-1)
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and

T{3 = (input torque) gm - cm
Ta = (feedback torque) gm - cm

Limits are imposed upon Ta and X, and are

1

|7 | < 1440.18 gm - cm ,
and

‘Xl‘ §~0.05236 radians .

The obvious choice of a function to minimize Ta and Xl is

T ‘
2 .
! (X + NI )de, ' (I11-2)

-
-

Rearranging the above equations to fit the form of (II-1) and (I1-2),

the following matrices are obtained.

a(l,1) 0 0 0
0 0 0 0 ,
A< , (I1I-3)
0 0 0 0
0 0 0 0

P —
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o 1.0 0 o ]
0 0 0 756.097| ’
3 = | (III-4)
0 0 0 1.0 |
0 -34.96 0 0

SR
O B . .
C = -~ H =[N =[1.0] (III-5)
0.376
e -

Zquations (III-3), (III-4), and (III-5) may be inserted into (II-5)
to form the Ricatti equation

. T -17T
K=-A-BK-=- KB+ KH 1C K (III-6)

with the final “conditions K(T) = 0. Using time reversal, v =T -t

gives the following Ricatti equation

1

. -1T
K=A+BTK+KB - KCH.'C'K B (II1I-7)

with initial conditions K(o) = 0. The solution of (III-7) for the
steady-state value of K may be used to obtain the feedback necessary

for the optimum control subject to the constraints of (II-2). Therefore

T = -HleTRX = -DX . o (uI-8)



Figure 2 is the block diagram of the plant with the optimal control.
Table 1 is a tabulation of the different values of a(l,1) and the D
matrix as well as the poles of the controlled system. Figure 3 is a
plot of the poles with a(l,1) as a parameter.

and X

Unfortunately, in this case, the state varilables x2, x3, 5

are inaccessible and so have to be estimated.
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IV. APPLICATION OF INACCESSIBLE STATE VARIABLE THEORY

‘ The state equations may be rewritten to include the effects of

noise; in this case a disturbance, da, and measurement noise}bi.

Refer to Figure 4.
hl = X2
= H/3, + Ta/Jd
I * T/

B
[

. (Iv-1)
=%
4 :H/Ja X, + Ta/Joz + 4y .

B
i

The output, Y , is given by

1’
v, = X1 + W, . (Iv-2)

1 1

The computatioi of the D matrix proceeds as before and the D matrix will
be unchanged. The additional matrices required for the computatiom of

Q and A1 are,

[1» 0 0 0]

M=
0 0 0 0
0 0 0 0
CVC' = .
0 0 0 0 , (Iv-3)
LP 0 0 s%x__

12
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W= [sd,] ,

where sd, is the spectral demsity of the disturbance dy and ds, is the

spectral density of the measurement noise w, -

Employing (II-11), (II-10), (II-8) and (II-7) enables the formation

N
the best estimate of X, X.

h

As there was little information available on the noise present
in the system, somewhat arbitrary values were used. These corresponded
to noise of 1 g amplitude and 20 KC/s bandwidth for dy and .005 radians
amplitude and a similar bandwidth for @1 These figures were then
multiplied‘éy 0.2,2,5 and 10 to give four sets of values.

The matrices A1 and Q were computed for each of these values and
are given in Tables 2 and 3. The estimator (II-7) may now be formed.
Alternétively take the Laplace transform of (II-7) and use capital
letters to denote Laplace Transforms of X and Y:

-

[sI +QJX = AlY , (Tv-4)
where s is Laplace's operator and I, of course, the unit matrix.

X = (sI+ Q)'lAIY | (Iv-5)
and since

U = -DX , (IV-6)
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Noise

Code al(l,l) al(Z,l) a1(3,1) a1(4,l)
0.1 7.87 31.24 - .034 - 275.33
1.0 77.25 2,984.16 - 3.55 - 2,700.83
5.0 294,34 43,319.11 -21.71 ~10,290.26

10.0 459.01 105, 344.61 -27.95 ~16,046.95

Table 2.--Tabulation of the ay Matrix with the Disturbance, da,

and Measurement Noise, W1, as a Parameter.

Noise Code Refers to those Noise Values in the Text.
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Table 3-~-Tabulation of the Q Matrix with the

A Matrix and Noise Code as a Parameter.

Noise Code 10

a(l,1) q(4,1) q(4,2) q(4,4)
10
1% 1077 ~4,158.69 108.06 332.48
1x 1077 21,547.03 237.06 552.82
1ox 1oi3 102,835.67 520.18 856.59
.1 x 1077 359,892.92 1,132.36 1,288.21
.1x 10 1,172,779.20 2,452.24 1,911.91
Noise Code 5
a(l,1) q(4,1) q(4,2) q(4,4)
1w 101% 1,598.00 108.06 332.48
1% 107, 27,303.73 237.06 552.82
.1 x 103 108,592.36 520.18 856.59
1% 107, 365,649.61 1,132.36 1,288.21
.1x 10 1,178,535.90 2,452.24 1,911.91
Noise Code 1
a(l,1) q(4, 1) q(4,2) q(4,4)
1 x 10%0 '9,187.43 108.06 332.48
1x 101% 34.893.15 237.06 552.82
1% 1027 116,181.79 520.18 856.59
.1x 107 373,239.04 1,132.36 1,288.21
1x 10%%  1,185,125.4 2,452.24 1,911.91
Noise Code .1
a(l,1) q(4,1) q(4,2) q(4,4)
.1 x 1030 11,612.93 108.06 332.48
J1x 10%3 37,318.65 237.06 552.82
.1 x 1057 118,607.29 520.18 856.59
1w 10%2 375,664, 54 1,132.36 1,288.21
.1 x 108 1,188,550.90 2,452.24 1,911.91
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U = -D(sI + Q)'lAly . : (1V-7)

Thus the transfer function of the filter is

U/Y = -D(sT + Q)-lAlY . (IV-8)

The poles and zeros of this filter, for different values of the D

matrix, and different noise levels, are given in Table 4. The

computation involved the inversion of a {% X 4r matrix and it is felt

that there might be some error in the computation of the zeros of the

function. However the poles given are correct.
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Table 4.--Tabulation of the Poles and Zeros
of the Transfer Function of the
Filter as given in (IV-8) with the
A Matrix and Noise Code as Parameters.

Noise Code 10

a(1,1) Zeros Poles
1z 10}2 0, + 110. - 378., -206 + j 375.
1x 107 0, +  18. ~ 551., -230 + j 481.
1 x 1012 0, +  38. - 746., =284 + 3 621.
1x 1013 0, -  80. - 995., -375 = j 8lé.
1 x 10 0, -~ 115. ~1,334., =518 + j1,088.
Noise Code 5
a(l, i) Zeros Poles
1y 10{? - 0, + 172. - 318., -154.+ 3 317.
.1 x 10] 0, 55. - 468., -189.F 3 415.
1 x 1075 0, 2. - 648., =251.% 3 547.
.1xl 14 0, - 4O0. - 883., -349.+ j 734.
.1x 10 0, - 69. -1,211., -498.% j1,004.
Noise Code 1
a{l,1) ’ Zeros Poles
1 x 100 ) 0, + 622. - 208., -100.% j 241.
1x 16°° 0, + 178. - 332., -149.% j 322.
1 x 1012 6, + 87. - 492., -220.% 3 443,
1 x 1083 0, + 43. - 713., -326.%  622.
1 x 10%% 0, + 17. -1,028., -480.% j 887.
Noise Code .1
a(l, 1) Zeros Poles
1 x 109 0, +3,482. - 170., = 85.+ 3 2i9.
1 x 1072 0, + 276. - 282., -139.% j 293.
1w 167 0, + 137. - 435, -214.t j 408.
1% 1083 0, 82. - 651., -322.% 3 383,
1x 10% 0, 52. - 953., -478.% j 848.
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V. LVALUATION

The usefulness of the procedure outlined above depends upon the
ease with which it may be applied and the effectiveness of the optimal
control. Once a computer program has been written the design procedure
is relatively simple so that the performance is the determiaing factor.

The performance of the system discussed in this memorandum is now

being evaluated at Huntsville.
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